
Universität Ulm | 89069 Ulm | Germany Faculty of
Engineering, Computer
Science and Psychology
Databases and Information
Systems Department

Design and Implementation
of a Generic Framework
for Rule-based Automated
User Role Management
Master’s thesis at Universität Ulm

Submitted by:
Sandro Eiler
sandro.eiler@uni-ulm.de

Reviewer:
Prof. Dr. Manfred Reichert
Prof. Dr. Rüdiger Pryss

Supervisor:
Robin Kraft

2020

Version from April 17, 2020

c© 2020 Sandro Eiler

This work is licensed under the Creative Commons. Attribution-NonCommercial-ShareAlike 3.0
License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-sa/3.0/de/
or send a letter to Creative Commons, 543 Howard Street, 5th Floor, San Francisco, California,
94105, USA.
Composition: PDF-LATEX 2ε

Abstract

Many systems that host groups of users, like social media platforms, provide solutions

or tools for users and groups of users. Within these groups, there can exist roles, which

again might be connected to permissions. The role model itself can vary from system

to system. Some are hierarchical, some have flat hierarchies, some are related to

the permissions, others with notifications. Decoupling the role model implementation

from the rest of the system has multiple advantages, such as achieving automatic role

assignment more easily and being able to change a role model on the fly.

Within this master thesis, challenges of automated role assignment are examined and

necessary elements for how a development tool can help are distilled. The main

contribution is the tool karmantra, which allows to integrate arbitrary role models in

software projects and lets developers extend or alter them. The tool is kept in a very

generic way to be expandable easily. With this tool, a step is taken towards decoupled

and transparent role systems, that can not only serve the needs of common commercial

platform needs.

iii

Acknowledgment

This master thesis would not exist in this way without following wonderful people: Robin

helped me as supervisor with his calm and prudent willingness to adapt to all needs

that came up, not only for this master thesis. Erce supported me tirelessly with his

programming experience, friendship and talks. And the lovely and idealistic Karrot group,

allowed me not only to find my thesis subject. Through this group I learned a lot about the

connection between democracy and computer science, group structures and utopistic

living communities. Warm hugs to you Nick, Tilmann, Janina and Bruno!

My thanks also go to my closest friends, my flat mates and my family who supported

me throughout the years. Without all that love, the things I do would not have the same

meaning and higher purpose.

As this master thesis is written, the world is hit by the Corona Virus. I hope that we

can make the best out of it and build a better society where humans stand together

regardless of nationality and wealth.

v

Contents

1 Introduction 1

1.1 Problem statement . 2

1.2 Objective . 3

1.3 Structure of the thesis . 4

2 Fundamentals 5

2.1 Related work . 5

2.2 Definitions . 7

2.3 Rule-based group role models . 8

3 Requirements 13

3.1 Functional requirements . 13

3.2 Non-functional requirements . 15

4 Design 17

4.1 DevOps . 17

4.2 Application specification . 18

4.3 Data model . 22

4.4 Task model . 26

5 Implementation 29

5.1 Development process . 29

5.2 Project structure . 31

5.3 Implementation components . 33

5.4 Addressing functional requirements . 40

6 Evaluation 41

6.1 Testing . 41

6.2 Fulfillment of non-functional requirements 43

6.3 Theoretical application of concept . 44

vii

Contents

7 Conclusion 47

7.1 Summary . 47

7.2 Discussion . 48

7.3 Outlook . 49

viii

1
Introduction

In social life, acting within groups has countless advantages over acting alone. No matter

if we connect through work, a sports club, a political party, scientific collaborations or on

social media platforms. We can observe that participating within groups always entails

having roles. But groups are not only a matter of social relations. In computer systems,

a user may be part of an administrator’s or moderator’s group for example. In this case,

a role does not necessarily represent a social circumstance anymore, but becomes a

matter of read and write privileges. Or to be more general, roles can be used to map

to permissions within a system. Roles can be obvious like employees and bosses or

standard users and administrators. But there can also be "hidden" roles, which a system

may not or does not want to represent. Considering the social component, we can give

examples like "the one that brings fun to the group" or "the one that is the driving force".

On the other hand, roles that lead to permissions in a computer system can influence

the social structures. Humans connect to others within groups because they are social

beings. Today we can not only find humans within groups, like for example, a therapy

dog. If we think groups more technically, members can not only be living entities. To

satisfy the user’s need of acting in groups and the developer’s need of supplying software

with different roles and permissions, innumerable tools, frameworks and systems exist,

trying to provide a best solution.

How good a software solution is (for the users or the supplier) may depend on how

interaction between groups members is made possible. As described, group members

have roles. In software systems, roles are often assigned by administrative users. The

assignment of roles is based on rules. Rules can be explicit and comprehensible. For

a rule, being explicit means, that roles are applied on the basis of objective criteria.

1

1 Introduction

Being comprehensible means, that a rule is understandable by group members and the

assignment process is transparent to the software users. Conversely, rules that are not

comprehensible and explicit can exist if they are kept in an administrator’s mind who

then performs role assignments. In a more technical way the aim of achieving explicit

and comprehensible rules can be missed if rule implementation is nested and hidden in

code or implemented in a complex way.

As we will examine, there are endless possibilities of role models that can be applied

to systems. Some use cases demand a flexible approach that allows different role

assignment models for different groups. Automating role assignments in a rule-based

way can lead to clearer and more comprehensive assignment processes. This in turn

can lead to positive effects in the sense that participation for improving a system is

easier. We will see that through a rule-based automated user role management, group

structures can be reflected more in a needed, natural and flexible way.

We will analyze the international online platform Karrot, which allows people from all over

the world to connect in groups for saving food, and see how its needs for an automated

rule-based role evaluation can be satisfied with this approach.

1.1 Problem statement

The development of a role model leads to various potential challenges:

• The role model may change over time and has to be re-implemented.

• The role model may not reflect the actual roles and needs within groups.

• Having a diverse user base raises the need of providing various role models for

different groups. Reasons like the lack of development resources or the developer’s

will can prevent respecting such needs.

• A role model may be hidden or dispersed in code and therefore hard to learn by

other developers and others with interest of understanding the role assignment. It

might be striven to make a role model in a software comprehensible even for users

without much technical background to allow a more holistic participation.

2

1.2 Objective

• Software tools focus on specific target groups only, such as enterprises or municipal

stakeholders.

• Democratic group processes can be lived in arbitrary environments, like organi-

zations and enterprises. The evaluation of member’s roles can be an intended

objective for such processes. Role assignment is rarely thought as a result of such

democratic processes and therefore few software approaches include this premise.

Considering all these challenges can be difficult in a development process. A developer

tool that supports building wanted role models in a way that it is decoupled from the rest

of the system and that can be changed easily afterwards, might be helpful. For this it’s

important to figure out a meta model that can fit all needs of systems with rule-based role

assignment. Additionally a generic tool has to have a high degree of module interchange-

ability, since arbitrary environments, operating systems and programming languages

have to be supported. With this master thesis these challenges are addressed.

1.2 Objective

Having stated problems of implementing rule-based role assignment, this thesis strives

to address these. The main contribution is the design of a role assignment solution

for developers which is meant to be kept as generic as possible. This includes an

implementation of the emerging concepts in form of a tool, called karmantra. First, an

analysis and design is done of what is needed to fulfill arbitrary developer needs. This

includes figuring out a meta model for role models and all its preconditions. The design

also includes defining interchangeable implementation layers for karmantra to ensure,

arbitrary developing environments can be supported in the long run. An important

question for this project is, how decoupling of role evaluation can be implemented,

especially in arbitrary systems. The tool karmantra is supposed to support a developer

with generating and managing a decoupled role model, allowing an rule-based automated

role evaluation.

Referring to the stated challenges, the following main objectives for the tool karmantra

are going to be achieved:

3

1 Introduction

• Automated rule-base role models can easily be generated and modified.

• The role model can be generated in a decoupled, comprehensible and clean way.

• The tool allows to integrate different programming languages and environments

like e.g., python and php.

1.3 Structure of the thesis

In Chapter 2, basic concepts and terms are specified. Therefor, related work in this field

is introduced. In particular, concepts which are needed to meet the thesis’ objectives,

are examined. Important examples for rule-based role models will be given. In Chapter 3,

both functional and non-functional requirements are collected and described. In Chapter

4, the concepts and designs for the implemented framework are presented. The actual

implementation solution is shown in Chapter 5, where the overall development process

and the important implementation details for all framework modules can be found. In

Chapter 6, the outcome is evaluated through defining tests and a theoretical application

of concept for the online platform Karrot. Lastly the thesis approach and outcome are

discussed to be able to give an outlook for future work.

4

2
Fundamentals

This chapter covers a retrospection on related scientific literature, presents basic con-

cepts for role-based access control and specifies relevant terms of this master thesis.

2.1 Related work

Role assignment evolved with research on permission assignment that originates from

security administration needs. Jin et al. describe [1] the first steps towards today’s

approaches with mentioning three influential access control models, namely the Dis-

cretionary Access Control (DAC) [2], the Mandatory Access Control (MAC) [3] and the

Role-Based Access Control (RBAC) [4, 5].

2.1.1 Role-based access control

While the first strategies have been evolved from the 1970s [5], RBAC has become

dominant later [1]. Enterprises’ and other medium to large organizations’ needs for

security management [6] are addressed in previous papers on an Enterprise RBAC

model (ERBAC) [7, 8]. Some drawbacks of only using roles have been presented by

e.g., Kern et al. [6]: In bigger organizations, a large number of roles is needed if roles

only contain explicit authorizations, which led to defining more generic roles as in [7].

Second, despite having advantages with using roles concerning permissions, the work

of assigning roles to users is still a factor to be reduced. Efforts to automate this process

are e.g., described in [8].

5

2 Fundamentals

When it comes to using a role model, different approaches have been described. Epstein

describes a top-down approach, called decomposition and a bottom-up approach,

called aggregation. Decomposition means, that roles are decomposed into permissions,

whereas aggregation means that permissions are aggregated into roles [9, 10].

2.1.2 Rule support for RBAC

Another approach, called Attribute-Based Access Control (ABAC) tries to combine the

advantages of the three mentioned access control models [11] and takes the approach

of assigning attributes to users on which permission granting can take place. Attributes

can be anything like identities or roles for example. Al-Kahtani and Sandhu define a

model, called Rule-Based RBAC (RB-RBAC) and define a simple extendable language

for defining rules [11]. The language is solely descriptive and does not provide a

mechanism to compare provided user attributes to the attributes required by a rule. In

[11], triggers are mentioned as mechanism for initiation of a role evaluation task. In [6] it

is stated, that a high level of automation can be achieved using rules for role models.

2.1.3 Seniority levels

With the model of Al-Kahtani and Sandhu, seniority levels of rules are introduced. This

means that a value, which is used by a rule, can dominate another value. Seniority levels

have to be predefined to be used by the role evaluation mechanism. If a user’s attributes

meet the conditions for a rule A and A’s conditions are a subset of a rule B, we say that

rule A is senior to rule B. Seniority levels, which can be described as rule hierarchies [6],

can conflict with role hierarchies.

2.1.4 Provisioning

The presented approaches do not only focus on the role models and the related role

evaluation. An important field is also the assignment of roles to users, which can be a

lot of work [8, 6]. Kern and Walhorn propose a method called rule-based provisioning

6

2.2 Definitions

and state that this allows a high level of automation. The expected effects are reduced

administration costs and a high security level.

2.2 Definitions

In literature some definitions vary. To avoid confusion, the terms below are explained to

have a distinct understanding of how the master thesis’ contribution has to be understood.

karmantra

The developed tool, being the contribution of this master thesis, is called karmantra.

karmantra originates from Karrotish Managed Trustbased Role Assignment. It

was inspired by the online platform Karrot. The original idea was to develop a tool

for trust based role assignment. This concept became more generalized within this

master thesis and is not limited to trust anymore.

context

A context defines the environment in which a role model is being used. An example

could be, having python3.7 as a context. Contexts can inherit from others. For

example the Django framework can be a context inheriting from a python context.

karmantra uses a context to deploy a role model customized for the target system.

user / DevUser

A user is person that can have memberships in system’s groups. A person using

karmantra to generate and alter a role model is called DevUser.

member

A member is a system’s entity and part of a group. A member can be a human

user or another entity.

role

A role is a status for members of a group. Usually roles are mapped to permissions.

rule

A rule is a condition that has to be met to have a role as a group member. A role

7

2 Fundamentals

can have multiple rules. A rule can imply the need of computing a result instead of

only comparing values against each other.

trigger

Triggers are a mechanism to initiate the role evaluation process. A trigger can be

fired for one or more rules.

2.3 Rule-based group role models

There are infinite possibilities for rule-based role models, depending on the system using

roles. This section gives an idea of how role models can look like. Every mentioned

model consists of roles that a user can obtain within a group. Every role has one or more

rules, defining the conditions of being entitled to have the role as a user.

Figure 2.1: An example model (with different roles and rules) allows automating through
triggers.

Figure 2.1 shows an example model that allows automating through triggers. These

triggers form the interface between tho role model instance and the rest of the system.

Advantages of this approach of having roles, rules and triggers are, that:

• Administrators are not necessary.

• Power (in form of permissions) is set by the model and not by a privileged user.

Thus power is potentially less likely to be abused.

8

2.3 Rule-based group role models

• Through the decoupling of role evaluation from the system’s other modules, docu-

mentation and transparency of the systems behavior can be improved.

• The real world can be reflected more naturally through models that allow self-

managed role assignment instead of having rigid role assignment.

2.3.1 Hierarchical vs non-hierarchical

In Figure 2.1 we have seen a non-hierarchical role model. Since we don’t want to

focus on specific types of role models, also hierarchical or mixed models are examined.

Following figure shows a mixed model with partial hierarchy:

Figure 2.2: An example model with two of three roles being within a hierarchy.

While hierarchical models are easy to implement if the task of role assignment is left to

administrative users, they have the disadvantage of providing ground for misuse and

rigid distribution of roles.

Since administration permissions can lead to subjective role assignment, hierarchical

role models do not necessarily reflect power structures and the possibilities to get roles

may depend on the persons having administrative roles. Of course there are endless

scenarios for environments, where hierarchical role models are unavoidable. But this

kind of model may seem to be the easier way for some developers to be implemented.

9

2 Fundamentals

Role models, without being strictly hierarchical, have further possibilities like representing

democratic decision processes.

2.3.2 Modeling aside from groups

Besides well known models that come from roles and rules, there are further fields of

application.

Reward systems

Figure 2.3: An example model for a reward system.

Figure 2.3 shows, how a reward system’s model can look like. It could e.g., be imple-

mented with a points system. In this case users can only get higher roles if the respective

rules apply. It is conceivable that roles can be lost also.

10

2.3 Rule-based group role models

Figure 2.4: An example role for a process-driven role assignment.

Including processes

Sometimes a role is not depending on attributes only, but on complex (possibly demo-

cratic) processes or work flows. In this case a role’s rule can represent one step of

a process of gaining (or losing) a role. Figure 2.4 shows how rules can be used to

represent process steps.

Notifications

Figure 2.5: An example model where roles represent notifications.

Figure 2.5 shows a completely different scenario. Here the use case is the regulation of

sending notifications. For this we replace the roles with notifications. A notification can

have one or more rules for being sent. This still perfectly fits to our environment of users

and groups.

11

3
Requirements

The following collected requirements were collected by interviewing developers from

different platforms and tie in the related work from above.

3.1 Functional requirements

The following functional requirements build the verifiable basis for the evaluation of

Chapter 4 (design) and Chapter 5 (implementation).

3.1.1 System integrability

The developer has to have the possibility to integrate the roles into the preferred lo-

cation. Adding new roles to the system must not be limited to a specific development

environment.

Components:

API

Let’s the DevUser control the tool in a generic way.

Framework Configurability

Let’s the DevUser define this tool’s behavior (e.g., to override existing roles).

13

3 Requirements

3.1.2 Project management

The DevUser must have the possibility to specify a path, where the project shall be

deployed. A project must be producible and removable. Dealing with multiple projects

has to be possible.

Components:

Listing projects

Allows registering projects for a quicker access.

Project creation

Allows creating a new role model in a specified location.

Project removal

Allows removing a role model in a specified location.

Model structure

The model structure can also be changed manually in an easy way.

3.1.3 Role modeling

The DevUser must be able to add and remove roles. The DevUser must be able to add

and remove rules. The DevUser must be able to add and remove triggers. The DevUser

must be able to map triggers to role’s rules.

Components:

Define abstract role class

All roles can inherit from the abstract class.

Define abstract rule class

All rules can inherit from the abstract class.

14

3.2 Non-functional requirements

Trigger mapping

Allows that triggers are mapped to the related role’s rules.

Role evaluation mechanism

The role model is eventually usable for users of groups.

3.1.4 Command line interface

Besides an API, a command line interface must give the possibility to execute all tasks

as described in 3.1.1, 3.1.2 and 3.1.3.

3.2 Non-functional requirements

With the section of non-functional requirements, criteria are specified to be used for

evaluating the approach’s design implementation.

Documentation

A documentation is required for a better understanding of karmantra and its usage.

It must explain basic design concepts and how to integrate an outcoming role

model within a project. Accordingly, the target group is DevUsers.

Re-Usability Of Code

It’s required to re-use existing ("external reuse") and own ("internal reuse") compo-

nents for code and design where possible and useful. The aim is to save time and

resources, to reduce redundancy and to take advantage of the fact that software

quality of external components can be high if it ran through a software development

process with adequate testing resources.

Robustness

karmantra has to tolerate erroneous input and to cope with errors during execution.

A hard crash without finishing the process gracefully should be avoidable. Guidance

for resolving problems should be provided where possible.

15

3 Requirements

Portability

The tool must be usable in different development environments. Also for the applied

role module and its role evaluation mechanisms, portability should be possible.

Open Source

The developed concepts and code are licensed with an open source approach.

Permission to re-use the code, at least in a non-commercial way, has to be

guaranteed.

Low Usability Complexity

karmantra has to be implemented in a comprehensible way. This affects the CLI

as well as the rest of the API. It is required that a low complexity for usability is

implemented so that both a guided walkthrough as well as automated approaches

are feasible for DevUsers.

16

4
Design

Within this chapter, requirements (system integrability, project management, role mod-

eling, command line interface) from Chapter 3 and principles which are presented in

Chapter 2, are used to develop a design for tools and frameworks. This design intends

to enable role model creation as well as a role evaluation mechanism. The design is

used to specify an architecture whose implementation is described in Chapter 5.

4.1 DevOps

Noticing the way tools like karmantra are intended to be used, this work can be described

as a DevOps contribution. DevOps’ name originates from software development (Dev)

and information-technology operations (Ops). While there is no unique definition of

DevOps in literature [12, 13], it can be described as method to address "the challenge of

what is often described as a gap between development and operations personnel" [13].

To understand how this description leads to some design decisions, it is useful to have a

look at some specifications of DevOps [12]:

• enabling communication between Development and Operations Team

• providing a development method / software delivery technique

• enabling an automated deployment / continuous integration / quality assurance

• connecting development to execution by encompassing people, processes and

technologies

17

4 Design

The following aspects are incorporated for the design and implementation of karmantra:

Automation, improving interaction of development and deployment and providing better

connection possibilities for people. The following section makes clear, how DevOps

objectives are realized for role model creation and role assignment.

4.2 Application specification

In this section, flows are defined for the application of role assignment. Remembering

Chapter 2, it is obvious that we have to differentiate between role provisioning and

role-based assignment of permissions. Assuming that mapping roles to permissions

is not a complex work, we focus on provisioning only. A rule-based provisioning, as in

2.1.4, can be split into two domains, which will be treated separately:

1. Role and rule modeling

2. rule-based role evaluation

The mentioned advantage of a high level of automation can be optimized with this

differentiation between modeling and evaluation. In the following sections flows are

described for the DevUser, the target system and the tools, that are used for role modeling

and role evaluation. These flows make clear, how the two provisioning domains role

modeling and role evaluations are applied.

4.2.1 Modeling

Creating, modifying or removing a role model includes the steps role model deployment

(including the integration into the target system) and rule implementation for the DevUser

which is abstractly demonstrated in Figure 4.1.

Initially, a DevUser wants to create a role model. The modeling tool receives all necessary

information on roles, rules, role evaluation triggers and how these are connected to

build the role model. The latter is then deployed to the DevUser’s target system. The

remaining task for the DevUser is to implement the following components:

18

4.2 Application specification

Figure 4.1: Interaction between DevUser, modeling tool and target system. The green
box represents the role model, while its content represents connected rules,
roles and triggers. In our case, the blue box represents karmantra.

wrapper [mandatory]

The wrapper ensures that arbitrary group and user objects can be used with the

role evaluation framework (described in 4.2.2). The DevUser has to specify how

the role evaluation framework can extract the needed information in the required

way.

rules [mandatory]

The DevUser has to implement the rule functions which are needed to check if

the rules apply for a user. A rule can be, for example, that the user has a specific

attribute value or that a system event occurred.

module globals [mandatory]

To check if a rule applies might require access to resources of the embedding

system.

trigger firing [mandatory]

Wherever triggers have to be fired, the role evaluation tool has to be indicated as

trigger receiver.

result format [optional]

If the default result format does not fit the DevUser’s needs, it can be replaced.

19

4 Design

role’s evaluation behaviour [optional]

If a role’s behavior has to be adjusted, its inherited functions can be overwritten. A

DevUser might like to order rules that are about to be checked in a specific order.

The components which are mentioned earlier in this chapter, namely the role model and

the role evaluation mechanism are tied together as importable module and deployed

into the target system. The DevUser of course has to import this module in the correct

locations.

To minimize the DevUser’s costs of time and implementation complexity, all components

within the importable framework can easily be prepared with templates, that just have to

be filled with missing code. It is indispensable that the DevUser has to contribute some

code. Because the modeling tool has to deal with arbitrary systems, it is not possible

to generate code for all existing possibilities of target systems. The next section 4.2.2

describes how the role evaluation import module has to work.

4.2.2 Role evaluation

Before describing (in section Mechanism) how the role evaluation mechanisms are

designed, basic assumptions are given (in section Role model elements) on how a role

model is defined.

Role model elements

Role models such as described in 2.3 can be described with the three element types

role, rule and trigger. Between different element types, edges can be defined. Following,

an edge is also called "connection". The relation of these elements can be described

through following rules:

• a role can have multiple rules

• a rule can be used by multiple roles

• one rule can have one trigger

20

4.2 Application specification

• a trigger can be mapped to multiple rules

The question remains whether we can model relations between roles. E.g., hierarchical

roles have to be used. With the definitions above we can also describe dependencies

between roles indirectly: The dependency of one role to another can be defined as a

rule.

Mechanism

To explain the role evaluation mechanism, the role evaluation import module’s overall

behavior is described from the target system’s perspective first. Second, the internal

view is explained.

The role evaluation mechanism is started whenever a trigger in the system is fired.

Figure 4.2 shows the flow of a role evaluation mechanism.

Figure 4.2: Interaction between the system and the role evaluation tool, using the previ-
ously defined role model.

The role evaluation framework provides an interface for firing the triggers. The module

will expect

• a trigger identifier

• the affected user

• and the user’s group as scope

for the role evaluation. Stating the group is necessary because a user’s roles can vary

for different groups. Smaller systems may not need to have multiple groups and thereby

21

4 Design

can keep all users within one group. karmantra provides the option to select all users

from a group for the evaluation process if no user is specified.

Following steps are performed in a role evaluation process:

1. A trigger is fired with information of user and group.

2. All rules connected to the trigger are collected.

3. For all roles that are connected to a rule from Step 2, an evaluation process is run

for every user, stated in step 1.

4. An evaluation process checks whether or not all rules apply for a user.

5. The collected evaluation results for the evaluations are collected and returned to

the system.

This design earmarks that all of a role’s rules are checked, even if only one of its rules

is connected to a trigger. The reason is that there may exist rules without connected

triggers and that a system might want to inform users or the system provider exactly

about which rules recently do or do not apply.

In the following sections it will become more clear, how all these principles and definitions

can be included into a tool’s architecture.

4.3 Data model

Referring to the objectives (automation, improving interaction of development and deploy-

ment and providing better connection possibilities for people) that are derived from our

DevOps considerations (in 4.1), an approach with multiple layers is designed as shown

in 4.3.1. All following descriptions are implemented for karmantra, which is explained in

detail within Chapter 5.

4.3.1 Implementation layers

Figure 4.3 shows the design of a tool that complies with the explanations from Section

4.2. In Section 4.3.1 (modeling tool), karmantra as CLI tool and importable tool for role

22

4.3 Data model

modeling tasks is presented. In Section 4.3.1 (role model deployment components),

karmantra’s deployed role evaluation approach is presented.

Modeling tool

Following components are strictly separated from each other to allow a high degree of

interchangeability. These layers are presented as blue boxes in Figure 4.3:

CLI

Makes the karmantra python module available for the command line.

Core

Acts as proxy for tasks and conveys tasks to lower layers. Described in detail in

Section 4.4.

Modeler

Provides all functions for executing modeling tasks and for role model deployment.

Role Model Import Module

Static files and templates for the deployment of the role model import module

(explained below) depending on the DevUser’s stated context.

The boxes Configuration, Logging and Helper (white) represent classes, that do not

implement functional requirements directly and adapt to the layer’s needs. They can be

seen as support classes. The main layers (blue) CLI, Core, Modeler and Role Model

Import Module are more likely to experience an evolution or even a replacement. The

command line interface is not part of the importable python module which contains all

functional behavior. Figure 4.4 shows the class diagram for karmantra. It indicates the

base classes Core, Configuration, Helper, Logger and Modeler. The edges show in

which classes instances of other classes are used. The indicated classes Backup_Error

and Config_Error are used for a more specific exception handling.

23

4 Design

Figure 4.3: karmantra’s implementation layers (blue) with supporting and needed compo-
nents (white). Upper box: CLI and the modeling tool. Lower box: Deployed
role model with role evaluation mechanism.

24

4.3 Data model

Figure 4.4: UML class diagram for karmantra’s module.

25

4 Design

Role model deployment components

The deployment of a role model and the role evaluation mechanism depends on the

DevUser’s specifications. Still, the structure remains the same. As shown in Figure 4.3,

the deployment consists of a "role mode configuration file" and an importable python

module, containing the role model and the role evaluation mechanism.

The role model configuration file allows karmantra to read the current role model and

how it is deployed together with the role evaluation mechanism, including the DevUser’s

implementations. The latter are provided as importable python module. The above

described Bindings and Results components are interchangeable as the other layers.

The role model itself is kept modular. Roles and rules inherit from abstract classes to

ensure a defined behavior.

Having described a data model for rule-based role evaluation in general and for kar-

mantra, the following chapter explains in detail, how tasks are designed.

4.4 Task model

karmantra is a tool allowing tasks to be commissioned by the DevUser via the CLI or the

python module. The layer approach from Section 4.3.1 led to a task model that implies

a hierarchical task. The component Core presents the root of the task execution. This

approach has the advantages of being useful intuitively and being arbitrary in a way that

tasks can be extended easily.

For example, executing the task "add role to model" via karmantra can be done with

following command:

1 ./start_cli add role --monochrome

Whenever a task like "add role" is received by a layer (in this case Core), it is responsible

to verify the correctness of the first section. If core did not know anything about the task

section "add", its responsibility would be to interrupt the process. If the task section

"add" is valid, the tail is sent to the layer that is now responsible. In this case the

26

4.4 Task model

section "role" belongs to the Modeling layer. Arguments that are provided with a task

may be forwarded to a tasks subsection. The transferred arguments can control the

task execution’s behavior. The advantage of this task model is that a high degree of

automation can be achieved.

4.4.1 Core tasks

Task roots that are received and processed by the core component form core tasks.

Possibly a CoreTask has no meaning for itself and acts as proxy. Current core tasks

are "add", "connect", "disconnect", "remove", "list" and "init".

4.4.2 Modeling tasks

The following tasks are executed by the modeling layer.

add role|rule|trigger: adds elements to role model

remove role|rule|trigger: removes elements from role model

remove project: removes a complete karmantra deployment

list projects: lists existing karmantra deployments

init: creates a new role model and deploys it

connect: connects rules and roles

disconnect: disconnects rules from roles

Having developed a design for rule-based role evaluation, this contribution is extended

by the practical implementation of karmantra, which is described in Chapter 5.

27

5
Implementation

This chapter shows, how the design of rule-based role evaluation is implemented for the

tool karmantra. While Chapter 4 demonstrated a general design that can be used in

many different ways, a practical implementation is presented here.

5.1 Development process

Conventions are necessary to prevent frustration and a waste of resources when it comes

to collaboration. Also for a single developer it is important to define clear framework

conditions for the development to keep a consistent code quality. This chapter meets

these needs by defining defining conventions and explaining implementation decisions.

5.1.1 Licensing

The license used for this master thesis’ contribution is version three of the GNU General

Public License (GPLv3). To keep this work open-source is the main reason.

5.1.2 Contribution workflow

Languages

As programming language, python3 is used. For the generated code representing a role

model and its evaluation mechanisms, Jinja2 [14] is used as templating language. For

configuration files, the YAML [15] standard is chosen.

29

5 Implementation

Coding conventions

Coding conventions are adapted to flake8 and black. flake8 is a linting tool performing

static analysis of source code which verifies pep8. pep8 [16] is a style guide with many

conventions.

black is an opinionated tool that helps formatting code. On its website the providers state:

"Black makes code review faster by producing the smallest diffs possible. Blackened

code looks the same regardless of the project you’re reading. Formatting becomes

transparent after a while and you can focus on the content instead." [17]

Development environment

The operating system used for implementing and testing, was Ubuntu 19.10. For package

management, pip [18] and the open source system Conda is used. As version control

system, GIT was selected.

Contribution workflow

The following steps are recommended for contributing to the project and represent the

development workflow.

1. Getting to know coding conventions, license and the documentation.

2. Work on changes in assigned branch.

3. Test the results.

4. Commit changes. Black and flake8 possibly interfere and changes have to be

applied before commitment is possible.

5. Merge to the master branch.

6. Update documentation.

30

5.2 Project structure

5.1.3 Documentation

The documentation is written with the markup language Markdown and deployed with

the tool and platform readthedocs [19].

5.2 Project structure

In the root directory for development, there is a folder for the source code (src), a folder

for the documentation (docs) and files related to the development workflow (such as

hooks for git). Figure 5.1 shows the directory structure for karmantra. In 4.3.1 more

about the background of this structure has been explained.

Within the src folder, the code for running karmantra can be found in folder main. Test

implementations can be found in folder tests.

5.2.1 main

main includes a starter file for the command line interface, a configuration file where

karmantra’s behavior can be adjusted and the directory karmantra which contains the

code with the required functionality. The configuration file is useful for automating

purposes where a developer wants to avoid command line arguments.

5.2.2 main/karmantra

This directory contains karmantra’s main functionality. Namely following components are

represented:

• configuration: Default behavior and mechanism for defining a specific behavior

• logger: Supports debugging and is used by CLI to print to console

• helper: Modules that are usable by multiple components and not specific enough

to be included in other modules

31

5 Implementation

Figure 5.1: Provided abstract data structure. Blue boxes are files. Other boxes are
directories. Directories with italic description are for possible extensions.

32

5.3 Implementation components

• core: Maps tasks to the execution of module’s functionalities

• modeler: All modules being responsible for a project dealing with role models

• style: A special helper for the appearance of console outputs.

• deployment: a directory, explained below

5.2.3 main/karmantra/deployment

The deployment directory’s structure contains one folder for every context. In this case a

context of python3 is specified. More specific contexts that are sub-contexts to python3

will be placed within the python3 folder. In Figure 5.1, such a sub-context would be

Karrot. In every context’s folder the template files for the target systems role model

deployment are kept. This is described in detail in 5.3.5.

5.2.4 tests

Within the tests directory there is one folder for every type of testing. In our case there is

a folder for integration testing.

5.2.5 tests/<test_type>/<context>

Within every folder in tests, following structure is intended: As described in the de-

ployment folder section above, one folder per context is created. Sub-contexts are

represented deeper in the structure respectively. The context folders contain the test

implementations, which are described in 6.1.

5.3 Implementation components

In the following sections, implementation components parts are described. The sections,

which explain the implemented modules, are kept short and simple, which means that

only important ones are described, because of their number.

33

5 Implementation

5.3.1 Modeler

This component is represented by the class Modeler and its functions.

With the class functions, modules for following scopes are implemented:

• deployment of static files

• deployment of deployment configuration file and files from templates (bindings,

rules, roles, wrapper)

• enquiry (to DevUser) for data needed for a task (e.g., a file path)

• query of DevUser’s input and conversion into role model items (roles/rules/triggers)

• update of the deployment configuration

• checking the health of a role model and its deployment (validating paths, attributes

and connections)

• creation / removal of a role model deployment

• execution of a modeling task (as described in 4.4) in a base and a CLI variant

• core tasks (as described in 4.4)

Requirements fulfillment

The components within this section are connected to the requirements System Integra-

bility, Project Management and Role Modeling.

Safe modifications

Modifying and overwriting in the DevUser’s file system comes with some high risk of

failures. A task, which, for example, alters a role model, might fail and result in data

being written to the file system only partially. This can lead to an un-usable role model

with its role evaluation mechanism.

34

5.3 Implementation components

To prevent losing time and other resources for fixing broken components, a safety

wrapper is provided for all tasks, which may alter something in the file system. Basically

the wrapper provides a backup and restore mechanism that works in the background.

Before a wrapped task is executed, the complete deployment destination is backed up.

If a task fails in any way so that it is detectable for python, the deployment destination is

cleared up completely and the backed up data is restored.

There are multiple conceivable use cases that include using multiple modifying tasks in

a row. To deal with these cases, multiple tasks can be wrapped together.

The involved modules are implemented as following private functions:

• _backup

• _restore

• _safe_tasks_wrapper

• _safe_task_wrapper

5.3.2 Helper

The Helper class provides functions that can be used across karmantra’s components.

Following module implementations satisfy, inter alia, following needs:

• simple file system path completion for DevUser input

• input validation

• validation of arguments for a function

• support for the YAML format

• providing external editor support

Requirements fulfillment

The component Helper provides modules for all components that support functional

requirements.

35

5 Implementation

5.3.3 Configuration

The class Configuration implements another important layer that allows adjustability for

DevUsers and an easy extensibility for developers who want to improve karmantra itself.

An instance of the Configuration class can be used to define a determined behavior

for karmantra. This may include how task execution behaves (e.g., whether existing

roles may be overwritten without prompt). It is also configurable how the CLI behaves

(e.g., the level of verbosity). A Configuration object provides default values that can be

changed.

Configuration Attributes

There are two types of configuration attributes:

configurable These values can be changed through command line arguments or the

karmantra.ini configuration file.

preset These values are predefined and can be changed by developers who want

to modify karmantra in general. For example, if a context has been added to

karmantra, it has to be indicated in the configuration as well.

The following tables list the used configuration attributes.

Attributes, settable by DevUsers:

name description
version Selects a specific karmantra version.
context Sets the context for deployment.
log_level Defines the verbosity as well as the file log level.
deployment_folder_name Defines the name of the deployed module.
deployment_config_file Defines the file name of the deployment configuration.
interactive Attribte set by CLI to control if karmantra is interactive.
prevent_file_editor Prevents opening an external file editor after deployment.
monochrome Flag that effects printing to stdout without colors.
update_existing Allows to overwrite existing elements like roles and rules.
configuration_path The path to karmantra’s configuration file karmantra.ini.

36

5.3 Implementation components

Preset Attributes:

name description
base_folder_name Folder name of deployed role model module.
templates_folder_name The name of the directory containing templates.
static_files_folder_name The name of the directory containing static files.
context_paths A dictionary, containing all context’s paths.
templates A dictionary with template’s file names.
static_files A dictionary with the static file’s names.
help_texts A dictionary containing filling text.
deployment_config_attributes The role model deployment’s default values.

Initialization

To provide an automatable and easy configurability, two ways for defining configurable

attributes are provided: Calling karmantra with appropriate command line arguments

and defining behavior in a configuration file. The format is set by python’s standard

library configparser.

To allow flexibility and to prevent ambiguity, a hierarchy for configuration setting is

defined: A configuration object can be initialized with default values without specifying

any attribute. With the object initialization all attributes from the file karmantra.ini are

looked up first and are used to overwrite the default values. Secondly, all existing

parameters given to the initialization function overwrite configuration values.

Some configuration values depend on others, so that these are generated in the end of

an initialization process.

5.3.4 Command Line Interface

The command line interface (CLI) is built with the aim of being simple and fast to use. It

was designed in a way, command line users would expect it to be, compared to other

standard tools on the command line. The CLI has a starter that uses python’s standard

37

5 Implementation

library argparse for parsing arguments. Figure 5.2 shows the help text, indicating

possible arguments.

These arguments can be clustered to "task arguments" and "parameter arguments". A

task is represented as concatenated strings. The first string is processed by the core

that has been described above. The later strings are processed by the subsequent

components. Parameter arguments can be used as parameters for task’s functions (e.g.,

a path of a needed file) and can be specified for determining karmantra’s behavior (like

the degree of verbosity).

Figure 5.2: The current arguments that can be passed to karmantra via the CLI.

38

5.3 Implementation components

The command line interface uses the configuration setting "interactive" to provide tasks

with the information on whether or not to get function parameters via user input. There’s

a limited input validation for command line arguments. Namely paths are checked for

correctness before continuing with the program execution.

Requirements fulfillment

The component Command Line Interface fulfills the requirement of the same name.

5.3.5 Role model deployment components

The role model deployment consists of two parts, as it was shown in Figure 4.3. First

there is the deployment configuration file. This file has the YAML format and contains all

important information on how the role model is deployed. It allows karmantra to backup

and modify the role model easily. Second, there is the role model provided in the form of

a python module. It can be imported to the system by the DevUser.

The role model import module contains the components that are described in 4.2.2:

wrapper.py Wraps the system’s group and user objects for karmantra.

binding.py Provides the API for the system and connects roles, rules and triggers.

result.py A class providing role evaluation result objects.

module_globals.py A location where the DevUser can make resources available to

the module.

role.py, rule.py Abstract classes for roles and rules.

role_<name>.py The respective role class inheriting from the abstract one.

rule_<name>.py The respective rule class inheriting from the abstract one.

39

5 Implementation

5.4 Addressing functional requirements

The following list shows, how the implementations are used to address the functional

requirements from 3.1:

requirement fulfillment
System Integrability Layer Approach (4.3.1), Modeler (5.3.1), Configuration (5.3.3)
Project Management Modeler (5.3.1)
Role Modeling Modeler (5.3.1), Role Model Deployment Components (5.3.5)
Command Line Interface CLI (5.3.4)

The classes Style and Helper (5.3.2) are helper classes that are used by most of the

other components.

40

6
Evaluation

In this chapter the test procedure for karmantra is presented, the fulfillment of non-

functional requirements is discussed and a theoretical application of the developed

concepts is explained using the platform Karrot.

6.1 Testing

To evaluate a correct behavior of karmantra, integration test cases are written with

python’s standard test libraries. The following list explains the tested cases and which

functions they are mapped to. The tests cover the functional requirements as addressed

in Section 5.4 have all run successfully.

6.1.1 Modeling

For testing karmantra’s modeling full set of functions, tests are applied for tasks with the

scope of core tasks (as described in Section 4.4.1). This is done by importing karmantra

as module. With every test case, a task is submitted to the module to be executed. To

prepare and clean up tests, python’s provided unittest functions setUp and tearDown

are used.

• Creating a new project for modeling roles:

test_create_new_project

• Delete an existing project:

test_project_deletion

41

6 Evaluation

• List existing projects:

test_project_list_projects_existing

test_project_list_projects_empty

• Add a role to project:

test_project_add_role

test_add_role_failing

test_add_role_overwriting

• Remove a role from project:

test_remove_role

• Add a rule to project:

test_add_rule

• Add a trigger to project:

test_add_trigger

• Connect a rule to a role:

test_connect_rule_to_role

• Remove a rule from project:

test_remove_rule_failing

• Remove a trigger from project:

test_remove_trigger_and_rule

• Disconnect a rule from a role:

test_disconnect_rule_from_role

6.1.2 Model usage

Having implemented tests for the correct behavior of karmantra’s modeling options, the

functionality of the outcoming model is the subsequent important field for testing.

To test the functionality of the importable role model, a test class with example users

within a group has been created. To simulate a realistic use case, the user and group ob-

jects lack attributes necessary for karmantra’s evaluation process. Having implemented

42

6.2 Fulfillment of non-functional requirements

such a test set, the wrappers for users and groups were adapted to demonstrate the

usability of arbitrary systems. In a second step the role evaluation itself is tested both for

the case of not being applicable for a user and for being applicable for a user.

6.2 Fulfillment of non-functional requirements

The fulfillment of non-functional requirements from 3.2 is verifiable with Chapter 4 mostly:

Documentation

A documentation of design and implementation is provided with this master the-

sis. Additionally, a deployable readthedocs documentation with descriptions and

tutorials is provided.

Re-Usability Of Code

The speraration of layers (4.3.1), helper classes 5.3 and models allowed a very

modular approach. The use of standard library solutions was mentioned and

performed.

Robustness

karmantra tolerates erroneous input e.g., with the input validation for command line

arguments 5.3.4 but also with modeling functions. With using python’s exception

handling, a most unwanted hard crashes can be prevented.

Portability

Portability is ensured through implementation layers (4.3.1) and the use of tem-

plates for different contexts (5.2.3).

Open Source

As described in 5.1.1, karmantra is licensed under the GNU General Public License,

version 3.

Low Usability Complexity

The careful design of tasks (4.4) and command line arguments ensures that

DevUsers can profit from low usability complexity. For the command line interface,

43

6 Evaluation

a walkthrough is usable, while using karmantra as python module comes with

clearly defined and easily understandable tasks.

6.3 Theoretical application of concept

To show that karmantra is applicable, the online platform Karrot is analyzed below. On

this basis it will be apparent how karmantra can be included into a working system. Karrot

has been chosen, because it fits the idea of automated rule-based role assignment, it

shows another use case among many business solutions and because it is assumed

to be more complex to include karmantra into an existing system than starting from

scratch. The exchange with and help from the developers of Karrot did not only support

the following theoretical application of concept, but also the design chapter of this master

thesis.

6.3.1 Karrot

Karrot is a platform, connecting people all over the world to save food from being thrown

away. Its motivation comes from the fact that about one billion people have to hunger

while twelve billion people can be fed with today’s possibilities. Foodsaving groups

intend to raise awareness for production and consumption of food through saving food.

Karrot provides the possibility for groups to organize via its platform. Its idea is to use

automated role assignment without interfering with group’s decisions on role assignment.

6.3.2 Current role implementation

Querying roles

Assuming, Karrot wants to find out if a user has the role editor, the function is_editor(user)

is called. is_editor(user) is a member of a group instance. The function itself calls the

function is_member_with_role(user,rolename) from the class GroupMembership. Figure

6.1 visualizes the process.

44

6.3 Theoretical application of concept

Figure 6.1: Karrot queries roles through the Django framework.

Updating roles

At the moment there is only one trigger for the change of roles: Giving trust carrots.

Whenever a trust carrot is given by a user A to a user B, Karrot will check if the change

will affect user B’s editor role status. If so, the new role will be made persistent. Figure

6.2 represents the process in an abstract way.

Figure 6.2: Karrot queries roles through the Django framework.

Proposal for implementation

Following the intentions and requirements of Karrot, a decoupling of the role evaluation

process can be achieved with karmantra, as visualized in Figure 6.3.

Figure 6.3 represents all steps that are taken within a role assignment process:

45

6 Evaluation

Figure 6.3: Rule-based role evaluation can be implemented for Karrot, using karmantra.

1. A user action or system task takes place.

2. The system uses the action from 1. as a trigger for karmantra’s role evaluation

framework. Information like the user and group are passed to the framework.

3. Knowing which triggers map to which rules, an evaluation process is initiated for

the associated roles.

4. Every role that has to be checked, examines whether its rules apply.

5. The results are given back to the system.

6. The system can use the results e.g., to update the user’s attributes in the database.

7. Additionally the system can use the result for e.g., user notification (7.1) or statistics

(7.2).

Knowing the key functions (see 6.3.2) for the recent role evaluation mechanism, it is

possible to connect this approach to Karrot.

46

7
Conclusion

Within this chapter, a summary is given for the approaches and contributions, given in

this master thesis. Last of all, the implementation is discussed and an outlook for future

work is given.

7.1 Summary

Within this master thesis, the specified challenges for software development led to the

design and implementation of the framework karmantra. It is independent from operating

systems, can be adapted to other programming languages and has the functionality of

generating arbitrary models for automated rule-based role evaluation. As shown, the

requirements for diverse role models can be complex. With the defined premises it was

possible to develop a meta model that allows automation in a generically usable way.

With this, we have seen that it is possible to build a very modular tool that is adaptable

for future advancements.

Within this thesis, general problems that can occur when dealing with role models were

introduced first in Chapter 1. Also the motivation to enable automated role assignment

through generic tools was explained. In Chapter 2, related work was referenced, impor-

tant definitions were made and rule-based role models were presented. In Chapter 3,

requirements were collected. In Chapter 4, a software tool design was developed that

should enable both the creation of role models and a role evaluation mechanism. The

realization of karmantra according to the principles in the Design chapter was explained

in chapter 5, which also presented how the requirements were addressed. Finally in

47

7 Conclusion

Chapter 6 the evaluation of karmantra by integration tests was presented, the fulfillment

of non-functional requirements was checked and a theoretical application of karmantra

for the platform Karrot was explained.

7.2 Discussion

Accomplishing the implementation of a generic tool like karmantra, we can have a

look at the non-functional requirements and ask if it is possible to do better. If we

take the requirement of comprehensibility as an example, we can argue that it is still

hard or impossible for many people to understand the developer’s implementation of

role models. Focusing on the links between rules, roles and triggers, this contribution

provides enough clarity for non-technical users already through human-readable and

easy to read configuration files. Since the developers have to implement the rule’s

behaviors, we could look at how to make these implementations more transparent. The

developer’s rule implementations fully depend on the role model embedding system.

This does not allow to build a generic tool anymore. Instead the approach would have

to be to build a full service system with an interface to allow communication between

the developer’s system and the role model system. That role model system might need

to have full control over the user database as well, which results in new challenges of

assigning responsibilities to different services.

The reason of generating a generic tool, which does not allow having a rule creation

service affects other developer needs as well. For example a notification system that

informs members about role changes has to be implemented by the developer. Fortu-

nately this has been respected in the design of karmantra, so that it is made easy to

include cases like this one.

We have seen that the tool karmantra can provide a platform independent tool that

can even allow including templates for other programming languages. If we look at

the development process, it can be questioned if there are use cases where having

karmantra as a python tool fits all needs. Despite justifying the decision of using python,

48

7.3 Outlook

it should not be too challenging to transfer the concepts within this thesis to implement

karmantra with other programming languages.

Improvement can come from extending karmantra by the possibility to define, how rules

are connected. Modeling of arbitrary rules could become more comfortable, if e.g., some

rules can be connected through a disjunction instead of a conjunction. For now this

option is manually feasible by overriding a role’s evaluation function.

7.3 Outlook

Having done a contribution in form of a design and implementation for a tool to build

more flexible, automated and comprehensible rule-based role models, there is still a

way to go to better software regarding the defined requirements. As mentioned, more

and more programming languages and contexts like python’s Django can be included.

We can see this as an ongoing process, adapting karmantra to the changing needs

of developers. It is even thinkable to offer loadable context modules in future, where

the needed respective context can be specified by the developer to keep the core of

karmantra slim.

Coming to a point where more and more features are available, other testing methods

like unit testing will become valuable and important as an addition to integration tests.

Since this thesis’ approach has not been tested in a long term for a developer’s imple-

mentation routine yet, this is something useful in future to get more insights for possible

improvements.

Concerning software development there is still a broad field for research when it comes

to systems that seek to provide role evaluation on the base of commonly agreed-upon

rules. This does not necessarily touch the subject of role assignment only, but becomes

clear especially here. Not only social organizations can profit from the results.

Having given this outlook and knowing that software can not provide solutions for all

problems, the master thesis shall be concluded with the hope that software can and

will be used to build tools that serve people and their goals for a better organisation,

exchange and cohabitation on earth.

49

Bibliography

[1] Jin, X., Krishnan, R., Sandhu, R.: A unified attribute-based access control model

covering dac, mac and rbac. In: IFIP Annual Conference on Data and Applications

Security and Privacy, Springer (2012) 41–55

[2] Sandhu, R.S., Samarati, P.: Access control: principle and practice. IEEE communi-

cations magazine 32 (1994) 40–48

[3] Sandhu, R.S.: Lattice-based access control models. Computer 26 (1993) 9–19

[4] Ferraiolo, D.F., Sandhu, R., Gavrila, S., Kuhn, D.R., Chandramouli, R.: Proposed

nist standard for role-based access control. ACM Transactions on Information and

System Security (TISSEC) 4 (2001) 224–274

[5] Sandhu, R.S., Coyne, E.J., Feinstein, H.L., Youman, C.E.: Role-based access

control models. Computer 29 (1996) 38–47

[6] Kern, A., Walhorn, C.: Rule support for role-based access control. In: Proceedings

of the tenth ACM symposium on Access control models and technologies. (2005)

130–138

[7] Kern, A.: Advanced features for enterprise-wide role-based access control. In: 18th

Annual Computer Security Applications Conference, 2002. Proceedings. (2002)

333–342

[8] Kern, A., Kuhlmann, M., Schaad, A., Moffett, J.: Observations on the role life-cycle

in the context of enterprise security management. In: Proceedings of the seventh

ACM symposium on Access control models and technologies. (2002) 43–51

[9] Epstein, P., Sandhu, R.: Engineering of role/permission assignments. In: Seven-

teenth Annual Computer Security Applications Conference, IEEE (2001) 127–136

[10] Epstein, P.A., Sandhu, R.: Engineering of role/permission assignments. George

Mason University (2002)

51

Bibliography

[11] Al-Kahtani, M.A., Sandhu, R.: A model for attribute-based user-role assignment.

In: 18th Annual Computer Security Applications Conference, 2002. Proceedings.,

IEEE (2002) 353–362

[12] Rütz, M.: Devops: A systematic literature review. (2019)

[13] Smeds, J., Nybom, K., Porres, I.: Devops: a definition and perceived adoption

impediments. In: International Conference on Agile Software Development, Springer

(2015) 166–177

[14] : Jinja2. (https://jinja.palletsprojects.com/) Accessed: 2020-04-02.

[15] : Yaml. (https://yaml.org/) Accessed: 2020-04-02.

[16] : Pep8. (https://www.python.org/dev/peps/pep-0008/) Accessed: 2020-04-02.

[17] : black. (https://black.readthedocs.io/en/stable/) Accessed: 2020-04-02.

[18] : pip. (https://pypi.org/project/pip/) Accessed: 2020-04-02.

[19] : readthedocs. (https://readthedocs.org/) Accessed: 2020-04-02.

52

List of Figures

2.1 An example model (with different roles and rules) allows automating

through triggers. 8

2.2 An example model with two of three roles being within a hierarchy. 9

2.3 An example model for a reward system. 10

2.4 An example role for a process-driven role assignment. 11

2.5 An example model where roles represent notifications. 11

4.1 Interaction between DevUser, modeling tool and target system. The green

box represents the role model, while its content represents connected

rules, roles and triggers. In our case, the blue box represents karmantra. 19

4.2 Interaction between the system and the role evaluation tool, using the

previously defined role model. 21

4.3 karmantra’s implementation layers (blue) with supporting and needed

components (white). Upper box: CLI and the modeling tool. Lower box:

Deployed role model with role evaluation mechanism. 24

4.4 UML class diagram for karmantra’s module. 25

5.1 Provided abstract data structure. Blue boxes are files. Other boxes are

directories. Directories with italic description are for possible extensions. . 32

5.2 The current arguments that can be passed to karmantra via the CLI. . . . 38

6.1 Karrot queries roles through the Django framework. 45

6.2 Karrot queries roles through the Django framework. 45

6.3 Rule-based role evaluation can be implemented for Karrot, using karmantra. 46

53

Name: Sandro Eiler Matriculation number: 751972

Honesty disclaimer

I hereby affirm that I wrote this thesis independently and that I did not use any other

sources or tools than the ones specified.

Ulm, 17.04.2020

Sandro Eiler

	Introduction
	Problem statement
	Objective
	Structure of the thesis

	Fundamentals
	Related work
	Definitions
	Rule-based group role models

	Requirements
	Functional requirements
	Non-functional requirements

	Design
	DevOps
	Application specification
	Data model
	Task model

	Implementation
	Development process
	Project structure
	Implementation components
	Addressing functional requirements

	Evaluation
	Testing
	Fulfillment of non-functional requirements
	Theoretical application of concept

	Conclusion
	Summary
	Discussion
	Outlook

